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Abstract

Associated Legendre functions arise in many problems of mathematical
physics. By using the generalized Abel–Plana formula, in this paper we derive
a summation formula for the series over the zeros of the associated Legendre
function of the first kind with respect to the degree. The summation formula
for the series over the zeros of the Bessel function, previously discussed in
the literature, is obtained as a limiting case. The Wightman function for a
scalar field with a general curvature coupling parameter is considered inside a
spherical boundary on the background of a constant negative curvature space.
The corresponding mode sum contains the series over the zeros of the associated
Legendre function. The application of the summation formula allows us to
present the Wightman function in the form of the sum of two integrals. The
first one corresponds to the Wightman function for the bulk geometry without
boundaries and the second one is induced by the presence of the spherical shell.
For points away from the boundary the latter is finite in the coincidence limit.
In this way the renormalization of the vacuum expectation value of the field
squared is reduced to that for the boundary-free part.

PACS numbers: 02.30.Gp, 03.70.+k, 04.62.+v

1. Introduction

In a number of problems in mathematical physics we need to sum over the values of a certain
function at integer points, and then subtract the corresponding integral. In particular, in
quantum field theory the expectation values for physical observables induced by the presence
of boundaries are presented in the form of this difference. The corresponding sum and integral,
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taken separately, diverge and some physically motivated procedure for handling the finite
result is needed. For a number of boundary geometries one of the most convenient methods
for obtaining such renormalized values is based on the use of the Abel–Plana summation
formula [1, 2] (for different forms of this formula discussed in the literature see also [3]).
Applications of the Abel–Plana formula in physical problems related to the Casimir effect for
flat boundary geometries and topologically, non-trivial spaces with corresponding references
can be found in [4, 5]. The use of this formula allows us to extract, in a cutoff independent
way, the Minkowski vacuum part and to obtain for the renormalized part rapidly convergent
integrals useful, in particular, for numerical calculations.

However, the applications of the Abel–Plana formula in its standard form are restricted
to the problems where the normal modes are explicitly known. In [6] we have considered a
generalization of this formula, which essentially enlarges the application range and allows us to
include problems where the eigenmodes are given implicitly as zeros of a given function. Well-
known examples of this kind are the boundary-value problems with spherical and cylindrical
boundaries. The generalized Abel–Plana formula contains two meromorphic functions and by
specifying one of them the Abel–Plana formula is obtained (for other generalizations of the
Abel–Plana formula see [5, 7, 8]). Applying the generalized formula to Bessel functions, in
[6, 9] summation formulae are obtained for the series over the zeros of various combinations
of these functions (for a review with physical applications see also [3, 10, 11]).

The summation formulae derived from the generalized Abel–Plana formula have been
applied for the evaluation of the vacuum expectation values of local physical observables
in the Casimir effect (for the Casimir effect see [4, 5, 12]) for plane boundaries with
Robin or non-local boundary conditions [13], for spherical boundaries in Minkowski and
global monopole bulks [14], and for cylindrical boundaries in Minkowski and cosmic string
bulks [15]. By making use of the generalized Abel–Plana formula, the vacuum expectation
values of the field squared and the energy–momentum tensor in closely related but more
complicated geometry of a wedge with cylindrical boundary are investigated in [16] for both
scalar and electromagnetic fields. As in the case of the Abel–Plana formula, the use of the
generalized formula in these problems allows us to extract the contribution of the unbounded
space and to present the boundary-induced parts in terms of exponentially converging integrals.
In [17], summation formulae for the series over the zeros of the modified Bessel functions with
an imaginary order are derived by using the generalized Abel–Plana formula. This type of
series arises in the evaluation of the vacuum expectation values induced by plane boundaries
uniformly accelerated through the Fulling–Rindler vacuum. Another class of problems where
the application of the generalized Abel–Plana formula provides an efficient way for the
evaluation of the vacuum expectation values is considered in [18]. In these papers, braneworld
models with two parallel branes on an anti-de Sitter bulk are discussed. The corresponding
mode-sums for physical observables bilinear in the field contain the series over the zeroes of
cylinder functions which are summarized by using the generalized Abel–Plana formula. The
geometry of spherical branes in Rindler-like spacetimes is considered in [19]. In [20] from
the generalized Abel–Plana formula a summation formula is derived over the eigenmodes of
a dielectric cylinder and this formula is applied for the evaluation of the radiation intensity
from a point charge orbiting along a helical trajectory inside the cylinder.

The physical importance of the Bessel functions is related to the fact that they appear
as solutions of the field theory equations in various situations. In particular, in spherical
and cylindrical coordinates the radial parts of the solutions for the scalar, fermionic
and electromagnetic waveequations on the background of the Minkowski spacetime are
expressed in terms of these functions. Another important class of special functions is the
so-called Legendre associated functions (see, for instance, [21, 22]). These functions can

2



J. Phys. A: Math. Theor. 41 (2008) 415203 A A Saharian

be considered as generalizations of the Bessel functions: in the limit of large values of
the degree when the argument is close to unity they reduce to the Bessel functions. The
associated Legendre functions arise naturally in many mathematical and physical applications.
In particular, they appear as solutions of physical field equations on the background of constant
curvature spaces (see, for instance, [4, 5, 23]) and the above-mentioned limit corresponds to the
limit when the curvature radius of the bulk goes to infinity. The eigenfunctions in braneworld
models with de Sitter and anti-de Sitter branes are also expressed in terms of the Legendre
functions (see [24]). Motivated by this, in the present paper, by making use of the generalized
Abel–Plana formula, we obtain a summation formula for the series over the zeros of the
associated Legendre function of the first kind with respect to the degree. In particular, this
type of series appears in the evaluation of expectation values for physical observables bilinear
in the operator of a quantum field on background of constant curvature spaces in the presence
of boundaries. As in the case of the other Abel–Plana-type formulae, previously considered
in the literature, the formula discussed here presents the sum of the series over the zeros
of the associated Legendre function in the form of the sum of two integrals. In boundary-
value problems the first one corresponds to the situation when the boundary is absent and
the second one presents the part induced by the boundary. For a large class of functions the
latter is rapidly convergent and, in particular, is useful for the numerical evaluations of the
corresponding physical characteristics.

We have organized the paper as follows. In section 2, by specifying the functions in the
generalized Abel–Plana formula we derive a formula for the summation of the series over the
zeros of the associated Legendre function with respect to the degree. In section 3, special
cases of this summation formula are considered. First, as a partial check we show that, as
a special case, the standard Abel–Plana formula is obtained. Then we show that from the
summation formula discussed in section 2, as a limiting case the formula is obtained for the
summation of the series over the zeros of the Bessel function, previously derived in [6]. A
physical application is given in section 4, where the positive frequency Wightman function
for a scalar field is evaluated inside a spherical boundary on the background of a negative
constant curvature space. It is assumed that the field obeys the Dirichlet boundary condition
on the spherical shell. The use of the summation formula from section 2 allows us to extract
from the vacuum expectation value the part corresponding to the geometry without boundaries
and to present the part induced by the spherical shell in terms of an integral, which is rapidly
convergent in the coincidence limit for points away from the boundary. The main results
of the paper are summarized in section 5. In appendix A we show that the zeros of the
associated Legendre function of the first kind with respect to the degree are simple and real,
and the asymptotic form for large zeros is discussed. In appendix B, asymptotic formulae
for the associated Legendre functions are considered for large values of the degree. These
formulae are used in section 2 to obtain the constraints imposed on the function appearing in
the summation formula.

2. Summation formula

In this section we derive a summation formula for the series over zeros of the associated
Legendre function of the first kind, P μ

iz−1/2(u), with respect to the degree, assuming that u > 1
and μ � 0 (in this paper the definition of the associated Legendre functions follows that given
in [22]). For given values u and μ this function has an infinity of real zeros. We will denote
the positive zeros arranged in ascending order of magnitude as zk:

P
μ

izk−1/2(u) = 0, k = 1, 2, . . . . (1)

3
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These zeros are functions of the parameters u and μ: zk = zk(u, μ). Note that one has
P

μ

iz−1/2(u) = P
μ

−iz−1/2(u) and, hence, −zk are zeros of the function P
μ

iz−1/2(u) as well. In
appendix A we show that the zeros zk are simple and under the conditions specified above the
function P

μ

iz−1/2(u) has no zeros which are not real.
A summation formula for the series over zk can be obtained by making use of the

generalized Abel–Plana formula [6] (see also [3])

lim
b→∞

{
p.v.

∫ b

a

dx f (x) − R[f (z), g(z)]

}
= 1

2

∫ a+i∞

a−i∞
dz[g(z) + σ(z)f (z)], (2)

where σ(z) ≡ sgn(Im z), the functions f (z) and g(z) are meromorphic for a � x � b in the
complex plane z = x + iy and p.v. stands for the principal value of the integral. In formula
(2) we have defined

R[f (z), g(z)] = π i

[ ∑
k

Res
z=zg,k

g(z) +
∑

k,Im zf,k �=0

σ(zf,k) Res
z=zf,k

f (z)

]
, (3)

with zf,k and zg,k being the positions of the poles of the functions f (z) and g(z) in the strip
a < x < b.

We choose the functions f (z) and g(z) in formula (2) in the form

f (z) = sinh(πz)h(z),

g(z) = e−iμπh(z)

π iP μ

iz−1/2(u)

{
cos[π(μ + iz)]Qμ

iz−1/2(u) + cos[π(μ − iz)]Qμ

−iz−1/2(u)
}
,

(4)

where Q
μ

iz−1/2(u) is the associated Legendre function of the second kind and the function h(z)

is meromorphic for a � Re z � b. By using relation (B.3) between the associated Legendre
functions given in appendix B, for the combination appearing on the left-hand side of formula
(2), one finds

g(z) ± f (z) = 2 e−iμπh(z)

π iP μ

iz−1/2(u)
cos[π(μ ∓ iz)]Qμ

∓iz−1/2(u). (5)

With the functions (4) the expression for R[f (z), g(z)] takes the form

R[f (z), g(z)] = 2
∑

k

e−iμπQ
μ

iz−1/2(u)

∂zP
μ

iz−1/2(u)
cos[π(μ + iz)]h(z)

∣∣∣∣
z=zk

+ 2 e−iμπr[h(z)], (6)

with the notation

r[h(z)] =
∑

k,Im zh,k �=0

Res
z=zh,k

{
Q

μ

−σ(z)iz−1/2(u)

P
μ

iz−1/2(u)
cos[π(μ − σ(z)iz)]h(z)

}

+
1

2

∑
k,Im zh,k=0

Res
z=zh,k

{
h(z)

P
μ

iz−1/2(u)

∑
l=±

cos[π(μ + liz)]Qμ

liz−1/2(u)

}
. (7)

In formula (7), zh,k are the positions of the poles for the function h(z).
In terms of the function h(z) the conditions for the generalized Abel–Plana formula (2)

to be valid take the form

lim
w→∞

∫ b±iw

a±iw
dz

Q
μ

∓iz−1/2(u)

P
μ

iz−1/2(u)
cos[π(μ ∓ iz)]h(z) = 0,

lim
b→∞

∫ b±i∞

b

dz
Q

μ

∓iz−1/2(u)

P
μ

iz−1/2(u)
cos[π(μ ∓ iz)]h(z) = 0.

(8)
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By using the asymptotic formulae for the associated Legendre functions given in appendix
B, it can be seen that these conditions are satisfied if the function h(z) is restricted to the
constraint

|h(z)| < ε(x) ecηy, z = x + iy, |z| → ∞, (9)

uniformly in any finite interval of x, where c < 2, ε(x) eπx → 0 for x → +∞, and η is defined
by the relation

u = cosh η. (10)

Substituting the functions (4) into formula (2) and by taking into account relations (5) and
(6), we obtain that for a function h(z) meromorphic in the half-plane Re z � a and satisfying
condition (9), the following formula takes place:

lim
b→∞

{
n∑

k=m

Tμ(zk, u)h(zk) − eiμπ

2
p.v.

∫ b

a

dx sinh(πx)h(x) + r[h(z)]

}

= i

2π

∫ a+i∞

a−i∞
dz

Q
μ

−σ(z)iz−1/2(u)

P
μ

iz−1/2(u)
cos[π(μ − σ(z)iz)]h(z), (11)

where and in what follows the notation

Tμ(z, u) = Q
μ

iz−1/2(u)

∂zP
μ

iz−1/2(u)
cos[π(μ + iz)] (12)

is used. On the left-hand side of formula (11), zm−1 < a < zm, zn < b < zn+1 and in the
definition of r[h(z)] the summation goes over the poles zh,k in the strip a < Re z < b.

Note that from the Wronskian relation for the associated Legendre functions one has

Q
μ

iz−1/2(u) = eiμπ�(iz + μ + 1/2)

(u2 − 1)�(iz − μ + 1/2)∂uP
μ

iz−1/2(u)
, z = zk. (13)

Now, by taking into account the formula

�(iz + μ + 1/2)

�(iz − μ + 1/2)
= π

|�(iz − μ + 1/2)|−2

cos[π(μ + iz)]
, (14)

for the gamma function, the factor Tμ(zk, u) in (11) can also be written in the form

Tμ(zk, u) = πeiμπ |�(iz − μ + 1/2)|−2

(u2 − 1)∂uP
μ

iz−1/2(u)∂zP
μ

iz−1/2(u)

∣∣∣∣
z=zk

.

Taking the limit a → 0, from (11) one obtains that for a function h(z) meromorphic in
the half-plane Re z � 0 and satisfying the condition (9), the following formula takes place:

∞∑
k=1

Tμ(zk, u)h(zk) = eiμπ

2
p.v.

∫ ∞

0
dx sinh(πx)h(x) − r[h(z)]

− 1

2π

∫ ∞

0
dx

Q
μ

x−1/2(u)

P
μ

x−1/2(u)
cos[π(μ + x)][h(x eπ i/2) + h(x e−π i/2)]. (15)

If the function h(z) has poles on the positive real axis, it is assumed that the first integral
on the right-hand side converges in the sense of the principal value. From the derivation of
(15) it follows that this formula may be extended to the case of some functions h(z) having
branch points on the imaginary axis, for example, having the form h(z) = h1(z)/(z

2 + c2)1/2,
where h1(z) is a meromorphic function. This type of function appears in the physical example
discussed in section 4. Special cases of formula (15) with examples are considered in the
following section.

5
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Formula (15) can be generalized for a class of functions h(z) having purely imaginary
poles at the points z = ±iyk, yk > 0, k = 1, 2, . . . , and at the origin z = y0 = 0. Let function
h(z) satisfy the condition

h(z) = −h(ze−π i) + o((z − σk)
−1), z → σk, σk = 0, iyk. (16)

Now, in the limit a → 0 the right-hand side of (11) can be presented in the form

i

2π

∑
α=+,−

( ∫
γ α

ρ

dz +
∑

σk=αiyk

∫
Cρ(σk)

dz

)
Q

μ

−αiz−1/2(u)

P
μ

iz−1/2(u)
cos[π(μ − αiz)]h(z), (17)

plus the sum of the integrals along the straight segments (±i(yk−1 + ρ),±i(yk − ρ)) of the
imaginary axis between the poles. In (17), Cρ(σk) denotes the right half of the circle with
radius ρ and with the center at the point σk , described in the positive direction. Similarly, γ +

ρ

and γ −
ρ are upper and lower halves of the semicircle in the right half-plane with radius ρ and

with the center at the point z = 0, described in the positive direction with respect to this point.
In the limit ρ → 0 the sum of the integrals along the straight segments of the imaginary axis
gives the principal value of the last integral on the right-hand side of (15). Further, in the terms
of (17) with α = − we introduce a new integration variable z′ = zeπ i. By using the relation
(16), the expression (17) is presented in the form

−
∑

σk=0,iyk

(1 − δ0σk
/2) Res

z=σk

{
Q

μ

−iz−1/2(u)

P
μ

iz−1/2(u)
cos[π(μ − iz)]h(z)

}
(18)

plus the part which vanishes in the limit ρ → 0. As a result, formula (15) is extended for
functions having purely imaginary poles and satisfying condition (16). For this, on the right-
hand side of (15) we have to add the sum of residues (18) at these poles and take the principal
value of the second integral on the right-hand side. The latter exists due to condition (16).
Note that for functions having the form h(z) = F(z)P

μ

iz−1/2(u) the left-hand side of (15) is
zero and from this formula we obtain a formula relating the integrals involving the Legendre
associated functions.

3. Special cases

Here we will consider special cases of the summation formula (15). First let us consider the
case μ = −1/2. The corresponding associated Legendre functions have the form

P
−1/2
z−1/2(cosh η) =

√
2

π

sinh(zη)

z
√

sinh η
,Q

−1/2
z−1/2(cosh η) = −i

√
π

2

e−zη

z
√

sinh η
. (19)

In this case one has zk = πk/η. Introducing a new function F(x) in accordance with the
relation F(ηx/π) = sinh(πx)h(x), and assuming that this function is analytic in the right
half-plane, from formula (15) we find the Abel–Plana formula in the standard form:

∞∑
k=1

F(k) = −1

2
F(0) +

∫ ∞

0
dx F(x) + i

∫ ∞

0
dx

F(ix) − F(−ix)

e2πx − 1
. (20)

Note that the first term on the right-hand side of this formula comes from the residue term
with σk = 0 in (18).

In the case μ = 1/2 for the corresponding associated Legendre functions we have the
expressions

P
1/2
z−1/2(cosh η) =

√
2

π

cosh(zη)√
sinh η

, Q
1/2
z−1/2(cosh η) = i

√
π

2

e−zη

√
sinh η

. (21)

6
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The zeros zk now have the form zk = π(k + 1/2)/η and for functions F(z) analytic in the
right half-plane from formula (15) we obtain the Abel–Plana formula in the form useful for
fermionic field calculations (see, for instance, [4, 5]):

∞∑
k=1

F(k + 1/2) =
∫ ∞

0
dx F(x) − i

∫ ∞

0
dx

F(ix) − F(−ix)

e2πx + 1
. (22)

As a next special case, let us consider the formula for the summation over the zeros of the
function P

−μ

isz−1/2(cosh(η/s)) in the limit when s → ∞. By taking into account the relation
(see appendix B)

lim
ν→+∞ νμP

−μ

iν−1/2(cosh(η/ν)) = Jμ(η), (23)

with Jμ(η) being the Bessel function of the first kind, in this limit from (15) we obtain the
summation formula for the series over zeros η = jμ,k, k = 1, 2, . . . , of the Bessel function.
In order to take this limit we also will need the formulae (B.10) from appendix B and the
formulae [25]

lim
ν→∞ νμP −μ

ν [cosh(x/ν)] = Iμ(x), lim
ν→∞ νμQ−μ

ν [cosh(x/ν)] = e−iμπKμ(x), (24)

with Iμ(x),Kμ(x) being the modified Bessel functions. First we rewrite formula (15) making
the replacements z → sz, x → sx, μ → −μ, on both sides of this formula including the
terms in r[h(z)], and we take u = cosh(η/s). In order to take the limit s → ∞ for the
second integral on the right-hand side of the resulting formula, we note that, as it follows from
the derivation of (15), the integrand of this integral (with the replacements described above)
should be understood as the limit

cos[π(sx − μ)]
∑

l=+,−
h(sx elπ i/2) = lim

ε→+0

∑
l=+,−

cos[π(sx − μ − lisε)]h(sx elπ i/2). (25)

Taking the limit s → ∞ with the help of formulae (23 ), (24), (B.10), we find the following
summation formula over the zeros of the Bessel function,

∞∑
k=1

2f (jμ,k)

jμ,kJ ′2
μ (jμ,k)

= p.v.

∫ ∞

0
dxf (x) − r1[f (z)]

− 1

π

∫ ∞

0
dx

Kμ(x)

Iμ(x)

[
eiπμf (x eπ i/2) + e−iπμf (x e−π i/2)

]
, (26)

where f (z) = lims→∞ esz/ηh(sz/η), and

rJ [f (z)] = π i
∑

k

Res
Im zh,k>0

[
H(1)

μ (z)

Jμ(z)
f (z)

]
− π i

∑
k

Res
Im zh,k<0

[
H(2)

μ (z)

Jμ(z)
f (z)

]

−π
∑

k

Res
Im zh,k=0

[
Yμ(z)

Jμ(z)
f (z)

]
− π

2
Res
z=0

[
Yμ(z)

Jμ(z)
f (z)

]
. (27)

This formula is a special case of the result derived in [6, 9] (see also [3]).
Now let us consider two important special cases of (15) corresponding to μ = −l, h(z) =

H(z)/ cosh(πz) and μ = −l − 1/2, h(z) = H(z)/ sinh(πz) with l = 0, 1, 2, . . . . The
associated Legendre functions with these values of the order appear as radial solutions of the
equations for various fields on the background of constant curvature spaces in cylindrical and
spherical coordinates. Let the function H(z) be meromorphic in the half-plane Re z � 0 and
satisfy the condition

|H(z)| < εH (x) ecηy, z = x + iy, |z| → ∞, (28)

7



J. Phys. A: Math. Theor. 41 (2008) 415203 A A Saharian

uniformly in any finite interval of x > 0, where c < 2, εH (x) → 0 for x → +∞. Then from
the results of section 2 it follows that the formula

∞∑
k=1

(−1)δQ
−l−δ/2
izk−1/2(u)H(zk)

∂zP
−l−δ/2
iz−1/2 (u)|z=zk

= 1

2
p.v.

∫ ∞

0
dx tanh1−δ(πx)H(x) − rδ[H(z)]

− 1

2π

∫ ∞

0
dx

Q
−l−δ/2
x−1/2 (u)

P
−l−δ/2
x−1/2 (u)

[H(x eπ i/2) + (−1)δH(x e−π i/2)], (29)

takes place, where δ = 0, 1. In this formula we have introduced the notation

rδ[H(z)] =
∑

k,Im zh,k �=0

Res
z=zh,k

[
σ δ(z)

Q
−l−δ/2
−σ(z)iz−1/2(u)

P
−l−δ/2
iz−1/2 (u)

H(z)

]

+
∑

k,Im zh,k=0

Res
z=zh,k

[
Q

−l−δ/2
−iz−1/2(u) + (−1)δQ

−l−δ/2
iz−1/2 (u)

2P
−l−δ/2
iz−1/2 (u)

H(z)

]
. (30)

Adding to the right-hand side of formula (29) the term

−(−1)δ
∑

σk=0,iyk

(1 − δ0σk
/2) Res

z=σk

[
Q

−l−δ/2
−iz−1/2(u)

P
−l−δ/2
iz−1/2 (u)

H(z)

]
, (31)

with H(z) obeying the condition H(z) = −(−1)δH(ze−π i) + o((z − σk)
−1) for z → σk , we

obtain the extension of this formula to the case when the function H(z) has poles at the points
0,±yk .

From (29), as an example when the series is summarized in closed form one has
∞∑

k=1

Q
−l−1/2
iz−1/2 (u)

∂zP
−l−1/2
iz−1/2 (u)

z2n cos(αz)

(z2 + c2)m+1

∣∣∣∣∣
z=zk

= (−1)m+n

m!

{
− π

2m+2

(
∂

c∂c

)m

(c2n−1e−αc)

− i
∂m

∂xm

[
Q

−l−1/2
x−1/2 (u)

P
−l−1/2
x−1/2 (u)

x2n cosh(αx)

(x + c)m+1

]
x=c

}
, (32)

where α < 2η, c > 0, with m � 0 and 0 � n � m being integers. The last term on the
right-hand side of this formula comes from the residue at the pole σk = ic. As a next example,
we take in formula (29) with δ = 1 the function

H(z) = z2n−νJν(az)
Jα(b

√
z2 + c2)

(z2 + c2)α/2
, (33)

where a, b and c are positive constants and n is a non-negative integer. This function is analytic
in the right half-plane and satisfies the condition (28) if a + b < 2η, 2n < α + ν. By taking
into account that (33) is an even function of z, from (29) we find

∞∑
k=1

Jv(azk)
Jα

(
b

√
z2
k + c2

)
(
z2
k + c2

)α/2

zν+2n
k Q

−l−1/2
izk−1/2(u)

∂zP
−l−1/2
iz−1/2 (u)|z=zk

= −1

2

∫ ∞

0
dx x2n−νJν(ax)

Jα(b
√

x2 + c2)

(x2 + c2)α/2
.

(34)

4. The Wightman function inside a spherical boundary in a constant curvature space

In this section we consider a physical application of the summation formula derived in
section 2. Namely, we will evaluate the positive frequency Wightman function for a scalar

8
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field and the vacuum expectation value of the field squared inside a spherical shell in a constant
negative curvature space assuming that the field obeys the Dirichlet boundary condition on
the shell (for quantum effects on background of constant curvature spaces see, for instance,
[4, 5, 23] and references therein).

Consider a quantum scalar field ϕ(x) with the curvature coupling parameter ξ on
background of the space with the constant negative curvature described by the line element

ds2 = dt2 − a2[dr2 + sinh2 r(dθ2 + sin2 θdφ2)], (35)

where a is a constant which is related to the non-zero components of the Ricci tensor and the
Ricci scalar by the relations

R1
1 = R2

2 = R3
3 = − 2

a2
, R = − 6

a2
. (36)

The field equation has the form

(∇l∇ l + M2 + ξR)ϕ(x) = 0, (37)

where M is the mass of the field quanta.
We are interested in quantum effects induced by the presence of a spherical shell with

radius r = r0, on which the field obeys the Dirichlet boundary condition: ϕ(x)|r=r0 = 0.
This boundary condition modifies the spectrum of the zero-point fluctuations compared with
the case of free space and changes the physical properties of the vacuum. Among the most
important characteristics of the vacuum are the expectation values of quantities bilinear in the
field operator such as the field squared and the energy–momentum tensor. These expectation
values are obtained from two-point functions in the coincidence limit. As a two-point function
here we will consider the positive frequency Wightman function W(x, x ′) = 〈0|ϕ(x)ϕ(x ′)|0〉,
where |0〉 is the amplitude for the vacuum state. This function also determines the response of
Unruh–De Witt-type particle detectors [23]. Expanding the field operator over the complete
set {ϕα(x), ϕ∗

α(x)} of classical solutions to the field equation satisfying the boundary condition,
the Wightman function is presented as the mode-sum

W(x, x ′) =
∑

α

ϕα(x)ϕ∗
α(x ′), (38)

where α is a set of quantum numbers specifying the solution.
By the symmetry of the problem under consideration, the eigenfunctions for the scalar

field can be presented in the form

ϕα(x) = Z(r)Ylm(θ, φ) e−iωt , (39)

where Ylm(θ, φ) are standard spherical harmonics, l = 0, 1, 2, . . . ,−l � m � l. From the
field equation (37) we obtain the equation for the radial function Z(r):

1

sinh2 r

d

dr

(
sinh2 r

dZ

dr

)
+

[(
ω2 − m2

eff

)
a2 − l(l + 1)

sinh2 r

]
Z = 0, (40)

where we have introduced the effective mass defined by

m2
eff = M2 − 6ξ/a2. (41)

In the region inside the spherical shell the solution of equation (40 ), finite at r = 0, is
expressed in terms of the associated Legendre function of the first kind and the eigenfunctions
have the form

ϕα(x) = Cα

P
−l−1/2
iz−1/2 (cosh r)√

sinh r
Ylm(θ, φ) e−iωt , (42)

9
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with the notation

z2 = (
ω2 − m2

eff

)
a2 − 1. (43)

From the boundary condition on the spherical shell we find that the eigenvalues for z are
solutions of the equation

P
−l−1/2
iz−1/2 (cosh r0) = 0, (44)

and, hence, z = zk, k = 1, 2, . . . , in the notation of section 2. The corresponding
eigenfrequencies are found to be

ω2
k = ω2(zk) = (

z2
k + 1 − 6ξ

)/
a2 + M2. (45)

Hence, the set α of the quantum numbers is specified to α = (l,m, k).
The coefficient Cα in (42) is determined from the orthonormalization condition∫

d3x
√

|g|ϕα(x)ϕ∗
α′(x) = δαα′

2ω
, (46)

where the integration goes over the region inside the spherical shell. Substituting the
eigenfunctions (42) into (46), by taking into account the integration formula (A.3) and the
boundary condition, one finds

C−2
α = a3 ω(z)

z

(
u2

0 − 1
)
∂zP

−l−1/2
iz−1/2 (u0)∂uP

−l−1/2
iz−1/2 (u)|z=zk,u=u0 , (47)

where and in the discussion below we use the notations

u = cosh r, u0 = cosh r0. (48)

By using the Wronskian relation (13), the formula for the normalization coefficient is written
as

C2
α = zk�(izk + l + 1)Q

−l−1/2
izk−1/2(u0) ei(l+1/2)π

a3ω(zk)�(izk − l)∂zP
−l−1/2
iz−1/2 (u0)|z=zk

. (49)

Note that the ratio of the gamma functions in this formula can also be presented in the form
�(izk + l + 1)

�(izk − l)
= |�(izk + l + 1)|2 cos[π(iz − l − 1/2)]

π
. (50)

Substituting the eigenfunctions into the mode-sum formula (38) and using the addition
theorem for the spherical harmonics, for the Wightman function one finds

W(x, x ′) = 1

4π2a3

∞∑
l=0

(2l + 1)Pl(cos γ )√
sinh r sinh r ′ ei(l+1/2)π

∞∑
k=1

zk|�(izk + l + 1)|2

× T−l−1/2(zk, u0)P
−l−1/2
izk−1/2 (cosh r)P

−l−1/2
izk−1/2 (cosh r ′)

e−iω(zk)�t

ω(zk)
, (51)

where �t = t − t ′ and Tμ(z, u) is defined by relation (12). In (51), Pl(cos γ ) is the Legendre
polynomial and

cos γ = cos θ cos θ ′ + sin θ sin θ ′ cos(φ − φ′). (52)

As the expressions for the zeros zk are not explicitly known, formula (51) for the Wightman
function is not convenient. In addition, the terms in the sum are highly oscillatory for large
values of quantum numbers.

For further evaluation of the Wightman function we apply to the series over k the
summation formula (15) taking in this formula

h(z) = z|�(iz + l + 1)|2P −l−1/2
iz−1/2 (cosh r)P

−l−1/2
iz−1/2 (cosh r ′)

e−iω(z)�t

ω(z)
. (53)

10
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The corresponding conditions are met if r + r ′ + �t/a < 2r0. In particular, this is the case in
the coincidence limit t = t ′ for the region under consideration. For the function (53) the part
of the integral on the right-hand side of formula (15) over the region (0, xM) vanishes and for
the Wightman function, one finds

W(x, x ′) = W0(x, x ′) − 1

4π2a2

∞∑
l=0

(2l + 1)Pl(cos γ )√
sinh r sinh r ′ ei(l+1/2)π

∫ ∞

xM

dx x
�(x + l + 1)

�(x − l)

× Q
−l−1/2
x−1/2 (u0)

P
−l−1/2
x−1/2 (u0)

P
−l−1/2
x−1/2 (cosh r)P

−l−1/2
x−1/2 (cosh r ′)

cosh
(√

x2 − x2
M�t/a

)
√

x2 − x2
M

, (54)

where we have defined

xM =
√

M2a2 + 1 − 6ξ . (55)

In formula (54), the first term on the right-hand side is given by

W0(x, x ′) = 1

8π2a3

∞∑
l=0

(2l + 1)Pl(cos γ )√
sinh r sinh r ′

∫ ∞

0
dx x sinh(πx)

× |�(ix + l + 1)|2P −l−1/2
ix−1/2 (cosh r)P

−l−1/2
ix−1/2 (cosh r ′)

e−iω(x)�t

ω(x)
. (56)

This function does not depend on the sphere radius and is the Wightman function for a scalar
field in the background spacetime described by the line element (35) when boundaries are
absent. This can also be seen by the direct evaluation. Indeed, when boundaries are absent the
eigenfunctions are still given by formula (42), where now the spectrum for z is continuous. In
this case the corresponding part on the right of the orthonormalization condition (46) should be
understood as the Dirac delta function. In the case z = z′ the normalization integral diverges
and, hence, the main contribution comes from large values r. By using the asymptotic formulae
for the associated Legendre functions for large values of the argument, we can see that∫ ∞

1
duP

−l−1/2
iz−1/2 (u)P

−l−1/2
iz′−1/2 (u) =

∣∣∣∣ �(iz)

�(l + 1 + iz)

∣∣∣∣
2

δ(z − z′). (57)

By using this result for the normalization coefficient in the case when boundaries are absent
one finds

Cα = 1√
2ωa3

∣∣∣∣�(l + 1 + iz)

�(iz)

∣∣∣∣ , (58)

and the eigenfunctions have the form (see also, [4, 26])

ϕα(x) =
∣∣∣∣�(l + 1 + iz)

�(iz)

∣∣∣∣ P
−l−1/2
iz−1/2 (cosh r)√

2ωa3 sinh r
Ylm(θ, φ) e−iωt . (59)

Substituting these eigenfunctions into the mode-sum (38), for the corresponding Wightman
function we find the formula which coincides with (56).

The case of a spherical boundary in the Minkowski spacetime is obtained in the limit
a → ∞, with fixed ar = R. In this limit one has xM = aM . Introducing a new integration
variable y = x/a, using formulae (24) and the asymptotic formula for the gamma function
for large values of the argument, we find

W(M)(x, x ′) = W
(M)
0 (x, x ′) −

∞∑
l=0

(2l + 1)Pl(cos γ )

4π2
√

RR′

∫ ∞

M

dy y

× Il+1/2(Ry)Il+1/2(R
′y)

Kl+1/2(R0y)

Il+1/2(R0y)

cosh(
√

y2 − M2�t)√
y2 − M2

. (60)
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This formula gives the positive frequency Wightman function inside a spherical shell with
radius R0 in the Minkowski bulk and is a special case of the general formula given in the
first paper of [14] for a scalar field with Robin boundary conditions in an arbitrary number of
spatial dimensions.

Having the Wightman function (54), we can evaluate the vacuum expectation value of the
field squared taking the coincidence limit of the argument. Of course, this limit is divergent
and some renormalization procedure is necessary. Here the important point is that for points
outside the spherical shell the local geometry is the same as for the case without boundaries
and, hence, the structure of the divergences is the same as well. This is also directly seen
from formula (54), where the second term on the right-hand side is finite in the coincidence
limit. Since in formula (54) we have already explicitly subtracted the boundary-free part, the
renormalization is reduced to that for the geometry without boundaries. In this way for the
renormalized vacuum expectation value of the field squared one has

〈ϕ2〉ren = 〈ϕ2〉0,ren −
∞∑
l=0

ei(l+1/2)π

4π2a2

(2l + 1)

sinh r

∫ ∞

xM

dx x

× �(x + l + 1)

�(x − l)

Q
−l−1/2
x−1/2 (cosh r0)

P
−l−1/2
x−1/2 (cosh r0)

[
P

−l−1/2
x−1/2 (cosh r)

]2√
x2 − x2

M

, (61)

where the first term on the right-hand side is the corresponding quantity in the constant
negative curvature space without boundaries and the second one is induced by the presence of
the spherical shell. For large values x, the integrand in (61) behaves as e−(r0−r)x/(2x sinh r)

and the integral is exponentially convergent at the upper limit for strictly interior points.
For r → 0 one has P

−l−1/2
x−1/2 (cosh r) ≈ (r/2)l+1/2/�(l+3/2), and in the boundary-induced

part at the sphere center the l = 0 term contributes only

〈ϕ2〉ren = 〈ϕ2〉0,ren − 1

2π2a2

∫ ∞

xM

dx
x2

(
x2 − x2

M

)−1/2

e2xr0 − 1
, r = 0, (62)

where we have used formulae (19). Note that for a conformally coupled field the boundary-
induced part in (62) coincides with the corresponding quantity for the sphere with radius ar0

in the Minkowski bulk.

5. Conclusion

The associated Legendre functions are an important class of special functions that appear in a
wide range of problems of mathematical physics. In the present paper, specifying the functions
in the generalized Abel–Plana formula in the form (4), we have derived summation formula
(15) for the series over the zeros of the associated Legendre function P

μ

iz−1/2(u) with respect
to the degree. This formula is valid for functions h(z) meromorphic in the right half-plane
and obeying condition (9). Using formula (15), the difference between the sum over the zeros
of the associated Legendre function and the corresponding integral is presented in terms of
an integral involving the associated Legendre functions with real values of the degree plus
residue terms. For a large class of functions h(z) this integral converges exponentially fast
and, in particular, is useful for numerical calculations. Frequently used two standard forms
of the Abel–Plana formula are obtained as special cases of formula (15) with μ = −1/2 and
μ = 1/2 and for an analytic function h(z). Applying the summation formula for the series
over the zeros of the function P

μ

iz−1/2(u cosh(η/s)) and taking the limit s → ∞ we have
obtained formula (26) for the summation of the series over the zeros of the Bessel function.

12
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The latter is a special case of the formula, previously derived in [6]. Further, we specify the
summation formula for two special cases of the order μ = −l and μ = −l − 1/2 with l being
a non-negative integer and give examples of the application of this formula. The associated
Legendre functions with these values of the order arise as solutions of the waveequation on
the background of constant curvature spaces in cylindrical and spherical coordinates.

In section 4 we consider a physical application of the summation formula. Namely,
for a quantum scalar field we evaluate the positive frequency Wightman function and the
vacuum expectation value of the field squared inside a spherical shell in a constant negative
curvature space assuming that the field obeys the Dirichlet boundary condition on the shell. In
spherical coordinates the radial part of the corresponding eigenfunctions contains the function
P

−l−1/2
iz−1/2 (cosh r) and the eigenfrequencies are expressed in terms of the zeros zk by relation

(45). As a result, the mode-sum for the Wightman function includes the summation over these
zeros. For the evaluation of the corresponding series we apply summation formula (15) with
the function h(z) given by (53). The term with the first integral on the right-hand side of
formula (15) corresponds to the Wightman function for the constant curvature space without
boundaries and the term with the second integral is induced by the spherical boundary. For
points away from the shell the latter is finite in the coincidence limit and can be directly used
for the evaluation of the boundary induced part in the vacuum expectation value of the field
squared. The latter is given by the second term on the right-hand side of formula (61). The
renormalization is necessary for the boundary-free part only and this procedure is the same as
that in quantum field theory without boundaries.

On the physical example considered we have demonstrated the advantages for the
application of the Abel–Plana-type formulae in the evaluation of the expectation values of local
physical observables in the presence of boundaries. For the summation of the corresponding
mode-sums the explicit form of the eigenmodes is not necessary and the part corresponding to
the boundary-free space is explicitly extracted. Further, the boundary-induced part is presented
in the form of an integral which rapidly converges and is finite in the coincidence limit for
points away from the boundary. In this way the renormalization procedure for local physical
observables is reduced to that in quantum field theory without boundaries. Note that methods
for the evaluation of global characteristics of the vacuum, such as total Casimir energy, in
problems where the eigenmodes are given implicitly as zeros of a given function, are described
in [27].
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Appendix A. On zeros of the function P μ
iz−1/2

(u)

In this appendix we show that the zeros z = zk are simple and real. By making use of the
differential equation for the associated Legendre functions it can be seen that the following
integration formula takes place:

∫
duP

μ

ν ′ (u)P μ
ν (u) = (1 − u2)

P
μ

ν ′ (u)∂uP
μ
ν (u) − P μ

ν (u)∂uP
μ

ν ′ (u)

ν ′(ν ′ + 1) − ν(ν + 1)
+ const. (A.1)

13
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Taking the limit ν ′ → ν and applying the l’Hôpital’s rule for the right-hand side, from this
formula we find∫

du
[
P μ

ν (u)
]2 = (1 − u2)

[
∂νP

μ
ν (u)

]
∂uP

μ
ν (u) − P μ

ν (u)∂ν∂uP
μ
ν (u)

2ν + 1
+ const. (A.2)

By taking into account the relation P
μ

−iz−1/2(u) = P
μ

iz−1/2(u), we see that for real z one has[
P

μ

iz−1/2(u)
]2 = ∣∣P μ

iz−1/2(u)
∣∣2

. Hence, from formula (A.2) we find∫ u

1
dv

∣∣P μ

iz−1/2(v)
∣∣2 = u2 − 1

2z

{[
∂zP

μ

iz−1/2(u)
]
∂uP

μ

iz−1/2(u) − P
μ

iz−1/2(u)∂z∂uP
μ

iz−1/2(u)
}
.

(A.3)

Here we have taken into account that for u → 1 one has P
μ

iz−1/2(u) ∼ (u − 1)−μ and, hence,
limu→1 P

μ

iz−1/2(u) = 0 for μ < 0. From formula (A.3) it follows that
[
∂zP

μ

iz−1/2(u)
]
z=zk

�= 0,
and, hence, the zeros zk are simple.

Now let us show that under the conditions u > 1 and μ � 0 all zeros of the
function P

μ

iz−1/2(u) are real. Suppose that z = λ is a zero of P
μ

iz−1/2(u) which is not
real. As the function P

μ

z−1/2(u) has no real zeros (see, for instance, [28]), λ is not purely
imaginary. If λ∗ is the complex conjugate to λ, then it is also a zero of P

μ

iz−1/2(u), because

P
μ

iλ∗−1/2(v) = [
P

μ

iλ−1/2(v)
]∗

. As a result, from formula (A.1) we find∫ u

1
dvP

μ

iλ∗−1/2(v)P
μ

iλ−1/2(v) = 0. (A.4)

We have obtained a contradiction, since the integrand on the left-hand side is positive. Hence
the number λ cannot exist and the function P

μ

iz−1/2(u) has no zeros which are not real.
From the asymptotic formula (B.4) for the function P

μ

iz−1/2(u) (see appendix B ) we obtain
the asymptotic expression for large zeros:

zk ∼ (πk − πμ/2 − π/4)/η. (A.5)

Note that this result can also be obtained by taking into account that for large values z from
(23) one has P

−μ

iz−1/2(cosh(η)) ≈ z−μJμ(ηz) and using the asymptotic form for the zeros of
the Bessel function (see, for instance, [22]).

Appendix B. Asymptotics of the associated Legendre functions

In this appendix we consider asymptotic expressions for the associated Legendre functions for
large values of the degree. As a starting point we use the formula

Q
μ

z−1/2(cosh η) = √
π eiμπ �(1/2 + z + μ)

�(1 + z)

(1 − e−2η)μ

e(z+1/2)η
F (1/2 + μ, 1/2 + z + μ; 1 + z; e−2η).

(B.1)

Using the linear transformation formula 15.3.4 from [22] for the hypergeometric function, the
expression for the function Q

μ

z−1/2(cosh η) is presented in the form

Q
μ

z−1/2(cosh η) = √
πeiμπ �(1/2 + z + μ)

�(1 + z)

e−zη

√
2 sinh η

F(1/2 + μ, 1/2 − μ; 1 + z; 1/(1 − e2η)).

(B.2)

Now, by using the result that for large |c| one has F(a, b; c; z) = 1 + O(1/|c|), from (B.2)
the asymptotic formula for the function Q

μ

z−1/2(cosh η) is obtained for large values |z|. The
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corresponding formula for the function P
μ

z−1/2(cosh η) is obtained by using the relation

πeiμπ sin(πz)P
μ

z−1/2(cosh η)

= cos[π(z − μ)]Qμ

−z−1/2(cosh η) − cos[π(z + μ)]Qμ

z−1/2(cosh η). (B.3)

In this way we obtain the following formulae,

P
μ

z−1/2(cosh η) ∼
√

2

π

yμ−1/2

√
sinh η

sin(ηy − iηx + πμ/2 + π/4),

Q
μ

z−1/2(cosh η) ∼ eiμπ

√
π

2

yμ−1/2

√
sinh η

exp[−ηx − i(ηy − πμ/2 + π/4)],

(B.4)

in the limit y → +∞, z = x + iy, and the formulae

P
μ

z−1/2(cosh η) ∼ xμ−1/2

√
2π sinh η

eηx+iηy,

Q
μ

z−1/2(cosh η) ∼
√

π

2
eiμπ xμ−1/2

√
sinh η

e−ηx−iηy,

(B.5)

in the limit x → +∞.
Now let us consider the asymptotics of the functions P

−μ

iν−1/2(cosh(η/ν)) and

Q
−μ

±iν−1/2(cosh(η/ν)) as ν → +∞. These asymptotics are obtained in the way similar to
that used in [25] for formulae (24). Our starting point is the formula

P
−μ

iν−1/2(cosh(η/ν)) = tanhμ(η/2ν)

�(1 + μ)
F(1/2 − iν, 1/2 + iν; 1 + μ;− sinh2(η/2ν)), (B.6)

relating the associated Legendre function to the hypergeometric function. From the definition
of the hypergeometric function it is not difficult to see that

lim
ν→+∞ F(1/2 − iν, 1/2 + iν; 1 + μ;− sinh2(η/2ν)) = �(1 + μ)(2/η)μJμ(η). (B.7)

Combining (B.6) and (B.7) we obtain formula (23). The corresponding formula for the
functions Q

−μ

±iν−1/2(cosh(η/ν)) is obtained by making use of the relation

2

π
sin(μπ) eiμπQ

−μ

±iν−1/2(u) = �(±iν − μ + 1/2)

�(±iν + μ + 1/2)
P

μ

iν−1/2(u) − P
−μ

iν−1/2(u), (B.8)

and formula (23). In this way we find

lim
ν→+∞ νμ eiμπQ

−μ

±iν−1/2(cosh(η/ν)) = π
e∓iμπJ−μ(η) − Jμ(η)

2 sin(μπ)
, (B.9)

or in the equivalent form

lim
ν→+∞ νμ eiμπQ

−μ

iν−1/2(cosh(η/ν)) = −π i

2
e−iμπH(2)

μ (η),

lim
ν→+∞ νμ eiμπQ

−μ

−iν−1/2(cosh(η/ν)) = π i

2
eiμπH(1)

μ (η),

(B.10)

where H(1,2)
μ (η) are the Hankel functions.
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